This function can be used to bootstrap [incidence2]
objects. Bootstrapping
is done by sampling with replacement the original input dates.
Arguments
- x
An
[incidence2]
object.- randomise_groups
[bool]
Should groups be randomised as well in the resampling procedure; respective group sizes will be preserved, but this can be used to remove any group-specific temporal dynamics.
If
FALSE
(default), data are resampled within groups.
Details
As original data are not stored in incidence2::incidence objects, the bootstrapping is achieved by multinomial sampling of date bins weighted by their relative incidence.
Examples
if (requireNamespace("outbreaks", quietly = TRUE)) {
data(fluH7N9_china_2013, package = "outbreaks")
i <- incidence(
fluH7N9_china_2013,
date_index = "date_of_onset",
groups = "gender"
)
bootstrap(i)
}
#> # incidence: 67 x 4
#> # count vars: date_of_onset
#> # groups: gender
#> date_index gender count_variable count
#> * <date> <fct> <chr> <int>
#> 1 2013-02-19 m date_of_onset 1
#> 2 2013-02-27 m date_of_onset 1
#> 3 2013-03-07 m date_of_onset 2
#> 4 2013-03-08 m date_of_onset 2
#> 5 2013-03-09 f date_of_onset 0
#> 6 2013-03-13 f date_of_onset 0
#> 7 2013-03-17 m date_of_onset 0
#> 8 2013-03-19 f date_of_onset 3
#> 9 2013-03-20 f date_of_onset 4
#> 10 2013-03-20 m date_of_onset 1
#> # … with 57 more rows